A global reanalysis of vegetation phenology

نویسندگان

  • R. Stöckli
  • T. Rutishauser
  • I. Baker
  • M. A. Liniger
  • A. S. Denning
چکیده

[1] Simulations of the global water and carbon cycle are sensitive to the model representation of vegetation phenology. Current phenology models are empirical, and few predict both phenological timing and leaf state. Our previous study demonstrated how satellite data assimilation employing an Ensemble Kalman Filter yields realistic phenological model parameters for several ecosystem types. In this study the data assimilation framework is extended to global scales using a subgrid‐scale representation of plant functional types (PFTs) and elevation classes. A reanalysis of vegetation phenology for 256 globally distributed regions is performed using 10 years of Moderate Resolution Imaging Spectroradiometer (MODIS) fraction of photosynthetically active radiation (FPAR) absorbed by vegetation and leaf area index (LAI) data. The 9 · 10 quality screened observations (corresponding to <1% of the globally available MODIS data) successfully constrain a posterior PFT‐dependent phenological parameter set. It reduces the global FPAR and LAI prediction error to 20.6% and 14.8%, respectively, compared to the prior prediction error. A 50 year long (1960–2009) daily 1° × 1° global phenology data set with a mean FPAR and LAI prediction error of 0.065 (−) and 0.34 (m m) is generated. Temperate phenology is best explained by a combination of light and temperature. Tropical evergreen phenology is found to be largely insensitive to moisture and light variations. Boreal phenology can be accurately predicted from local to global scales, while temperate and mediterranean landscapes might benefit from a better subgrid‐scale PFT classification or from a more complex canopy radiative transfer model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short communication Monitoring vegetation phenology using MODIS

Accurate measurements of regional to global scale vegetation dynamics (phenology) are required to improve models and understanding of inter-annual variability in terrestrial ecosystem carbon exchange and climate–biosphere interactions. Since the mid-1980s, satellite data have been used to study these processes. In this paper, a new methodology to monitor global vegetation phenology from time se...

متن کامل

Identifying environmental controls on vegetation greenness phenology through model–data integration

Existing dynamic global vegetation models (DGVMs) have a limited ability in reproducing phenology and decadal dynamics of vegetation greenness as observed by satellites. These limitations in reproducing observations reflect a poor understanding and description of the environmental controls on phenology, which strongly influence the ability to simulate longer-term vegetation dynamics, e.g. carbo...

متن کامل

Temporal Trends and Spatial Variability of Vegetation Phenology over the Northern Hemisphere during 1982-2012

Satellite-derived vegetation phenology has been recognized as a key indicator for detecting changes in the terrestrial biosphere in response to global climate change. However, multi-decadal changes and spatial variation of vegetation phenology over the Northern Hemisphere and their relationship to climate change have not yet been fully investigated. In this article, we investigated the spatial ...

متن کامل

Analysis of Differences in Phenology Extracted from the Enhanced Vegetation Index and the Leaf Area Index

Remote-sensing phenology detection can compensate for deficiencies in field observations and has the advantage of capturing the continuous expression of phenology on a large scale. However, there is some variability in the results of remote-sensing phenology detection derived from different vegetation parameters in satellite time-series data. Since the enhanced vegetation index (EVI) and the le...

متن کامل

Variability and climate change trend in vegetation phenology of recent decades in the Greater Khingan Mountain area, Northeastern China

Vegetation phenology has been used in studies as an indicator of an ecosystem’s responses to climate change. Satellite remote sensing techniques can capture changes in vegetation greenness, which can be used to estimate vegetation phenology. In this study, a long-term vegetation phenology study of the Greater Khingan Mountain area in Northeastern China was performed by using the Global Inventor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011